mirror of
				https://github.com/zadam/trilium.git
				synced 2025-10-31 11:39:01 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			117 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			117 lines
		
	
	
		
			4.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!doctype html>
 | |
| 
 | |
| <title>CodeMirror: sTeX mode</title>
 | |
| <meta charset="utf-8"/>
 | |
| <link rel=stylesheet href="../../doc/docs.css">
 | |
| 
 | |
| <link rel="stylesheet" href="../../lib/codemirror.css">
 | |
| <script src="../../lib/codemirror.js"></script>
 | |
| <script src="stex.js"></script>
 | |
| <style>.CodeMirror {background: #f8f8f8;}</style>
 | |
| <div id=nav>
 | |
|   <a href="https://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
 | |
| 
 | |
|   <ul>
 | |
|     <li><a href="../../index.html">Home</a>
 | |
|     <li><a href="../../doc/manual.html">Manual</a>
 | |
|     <li><a href="https://github.com/codemirror/codemirror">Code</a>
 | |
|   </ul>
 | |
|   <ul>
 | |
|     <li><a href="../index.html">Language modes</a>
 | |
|     <li><a class=active href="#">sTeX</a>
 | |
|   </ul>
 | |
| </div>
 | |
| 
 | |
| <article>
 | |
| <h2>sTeX mode</h2>
 | |
| <form><textarea id="code" name="code">
 | |
| \begin{module}[id=bbt-size]
 | |
| \importmodule[balanced-binary-trees]{balanced-binary-trees}
 | |
| \importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
 | |
| 
 | |
| \begin{frame}
 | |
|   \frametitle{Size Lemma for Balanced Trees}
 | |
|   \begin{itemize}
 | |
|   \item
 | |
|     \begin{assertion}[id=size-lemma,type=lemma] 
 | |
|     Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree} 
 | |
|     of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
 | |
|      $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
 | |
|     \termref[cd=graphs-intro,name=node]{nodes} at 
 | |
|     \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
 | |
|     \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
 | |
|    \end{assertion}
 | |
|   \item
 | |
|     \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
 | |
|       \begin{spfcases}{We have to consider two cases}
 | |
|         \begin{spfcase}{$i=0$}
 | |
|           \begin{spfstep}[display=flow]
 | |
|             then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
 | |
|             $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
 | |
|           \end{spfstep}
 | |
|         \end{spfcase}
 | |
|         \begin{spfcase}{$i>0$}
 | |
|           \begin{spfstep}[display=flow]
 | |
|            then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes 
 | |
|            \begin{justification}[method=byIH](IH)\end{justification}
 | |
|           \end{spfstep}
 | |
|           \begin{spfstep}
 | |
|            By the \begin{justification}[method=byDef]definition of a binary
 | |
|               tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
 | |
|             two children that are at depth $i$.
 | |
|           \end{spfstep}
 | |
|           \begin{spfstep}
 | |
|            As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
 | |
|             leaves.
 | |
|           \end{spfstep}
 | |
|           \begin{spfstep}[type=conclusion]
 | |
|            Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
 | |
|           \end{spfstep}
 | |
|         \end{spfcase}
 | |
|       \end{spfcases}
 | |
|     \end{sproof}
 | |
|   \item 
 | |
|     \begin{assertion}[id=fbbt,type=corollary]	
 | |
|       A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
 | |
|     \end{assertion}
 | |
|   \item
 | |
|       \begin{sproof}[for=fbbt,id=fbbt-pf]{}
 | |
|         \begin{spfstep}
 | |
|           Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
 | |
|         \end{spfstep}
 | |
|         \begin{spfstep}
 | |
|           Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
 | |
|         \end{spfstep}
 | |
|       \end{sproof}
 | |
|     \end{itemize}
 | |
|   \end{frame}
 | |
| \begin{note}
 | |
|   \begin{omtext}[type=conclusion,for=binary-tree]
 | |
|     This shows that balanced binary trees grow in breadth very quickly, a consequence of
 | |
|     this is that they are very shallow (and this compute very fast), which is the essence of
 | |
|     the next result.
 | |
|   \end{omtext}
 | |
| \end{note}
 | |
| \end{module}
 | |
| 
 | |
| %%% Local Variables: 
 | |
| %%% mode: LaTeX
 | |
| %%% TeX-master: "all"
 | |
| %%% End: \end{document}
 | |
| </textarea></form>
 | |
|     <script>
 | |
|       var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
 | |
|     </script>
 | |
| 
 | |
|     <p>sTeX mode supports this option:</p>
 | |
|     <d1>
 | |
|       <dt><code>inMathMode: boolean</code></dt>
 | |
|       <dd>Whether to start parsing in math mode (default: <code>false</code>).</dd>
 | |
|     </d1>
 | |
| 
 | |
|     <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
 | |
| 
 | |
|     <p><strong>Parsing/Highlighting Tests:</strong> <a href="../../test/index.html#stex_*">normal</a>,  <a href="../../test/index.html#verbose,stex_*">verbose</a>.</p>
 | |
| 
 | |
|   </article>
 | 
