mirror of
				https://github.com/zadam/trilium.git
				synced 2025-10-29 02:28:57 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
| <!doctype html>
 | |
| 
 | |
| <title>CodeMirror: Mathematica mode</title>
 | |
| <meta charset="utf-8"/>
 | |
| <link rel=stylesheet href="../../doc/docs.css">
 | |
| 
 | |
| <link rel=stylesheet href=../../lib/codemirror.css>
 | |
| <script src=../../lib/codemirror.js></script>
 | |
| <script src=../../addon/edit/matchbrackets.js></script>
 | |
| <script src=mathematica.js></script>
 | |
| <style type=text/css>
 | |
|   .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
 | |
| </style>
 | |
| <div id=nav>
 | |
|   <a href="https://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
 | |
| 
 | |
|   <ul>
 | |
|     <li><a href="../../index.html">Home</a>
 | |
|     <li><a href="../../doc/manual.html">Manual</a>
 | |
|     <li><a href="https://github.com/codemirror/codemirror">Code</a>
 | |
|   </ul>
 | |
|   <ul>
 | |
|     <li><a href="../index.html">Language modes</a>
 | |
|     <li><a class=active href="#">Mathematica</a>
 | |
|   </ul>
 | |
| </div>
 | |
| 
 | |
| <article>
 | |
| <h2>Mathematica mode</h2>
 | |
| 
 | |
| 
 | |
| <textarea id="mathematicaCode">
 | |
| (* example Mathematica code *)
 | |
| (* Dualisiert wird anhand einer Polarität an einer
 | |
|    Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
 | |
|    mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
 | |
|    $p$ ist eine Liste von Polynomen - ein Ideal. *)
 | |
| dualize::"singular" = "Q must be regular: found Det[Q]==0.";
 | |
| dualize[ Q_, p_ ] := Block[
 | |
|     { m, n, xv, lv, uv, vars, polys, dual },
 | |
|     If[Det[Q] == 0,
 | |
|       Message[dualize::"singular"],
 | |
|       m = Length[p];
 | |
|       n = Length[Q] - 1;
 | |
|       xv = Table[Subscript[x, i], {i, 0, n}];
 | |
|       lv = Table[Subscript[l, i], {i, 1, m}];
 | |
|       uv = Table[Subscript[u, i], {i, 0, n}];
 | |
|       (* Konstruiere Ideal polys. *)
 | |
|       If[m == 0,
 | |
|         polys = Q.uv,
 | |
|         polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
 | |
|         ];
 | |
|       (* Eliminiere die ersten n + 1 + m Variablen xv und lv
 | |
|          aus dem Ideal polys. *)
 | |
|       vars = Join[xv, lv];
 | |
|       dual = GroebnerBasis[polys, uv, vars];
 | |
|       (* Ersetze u mit x im Ergebnis. *)
 | |
|       ReplaceAll[dual, Rule[u, x]]
 | |
|       ]
 | |
|     ]
 | |
| </textarea>
 | |
| 
 | |
| <script>
 | |
|   var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
 | |
|     mode: 'text/x-mathematica',
 | |
|     lineNumbers: true,
 | |
|     matchBrackets: true
 | |
|   });
 | |
| </script>
 | |
| 
 | |
| <p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
 | |
| </article>
 | 
