mirror of
				https://github.com/zadam/trilium.git
				synced 2025-11-03 21:19:01 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			73 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<!doctype html>
 | 
						|
 | 
						|
<title>CodeMirror: Mathematica mode</title>
 | 
						|
<meta charset="utf-8"/>
 | 
						|
<link rel=stylesheet href="../../doc/docs.css">
 | 
						|
 | 
						|
<link rel=stylesheet href=../../lib/codemirror.css>
 | 
						|
<script src=../../lib/codemirror.js></script>
 | 
						|
<script src=../../addon/edit/matchbrackets.js></script>
 | 
						|
<script src=mathematica.js></script>
 | 
						|
<style type=text/css>
 | 
						|
  .CodeMirror {border-top: 1px solid black; border-bottom: 1px solid black;}
 | 
						|
</style>
 | 
						|
<div id=nav>
 | 
						|
  <a href="https://codemirror.net"><h1>CodeMirror</h1><img id=logo src="../../doc/logo.png"></a>
 | 
						|
 | 
						|
  <ul>
 | 
						|
    <li><a href="../../index.html">Home</a>
 | 
						|
    <li><a href="../../doc/manual.html">Manual</a>
 | 
						|
    <li><a href="https://github.com/codemirror/codemirror">Code</a>
 | 
						|
  </ul>
 | 
						|
  <ul>
 | 
						|
    <li><a href="../index.html">Language modes</a>
 | 
						|
    <li><a class=active href="#">Mathematica</a>
 | 
						|
  </ul>
 | 
						|
</div>
 | 
						|
 | 
						|
<article>
 | 
						|
<h2>Mathematica mode</h2>
 | 
						|
 | 
						|
 | 
						|
<textarea id="mathematicaCode">
 | 
						|
(* example Mathematica code *)
 | 
						|
(* Dualisiert wird anhand einer Polarität an einer
 | 
						|
   Quadrik $x^t Q x = 0$ mit regulärer Matrix $Q$ (also
 | 
						|
   mit $det(Q) \neq 0$), z.B. die Identitätsmatrix.
 | 
						|
   $p$ ist eine Liste von Polynomen - ein Ideal. *)
 | 
						|
dualize::"singular" = "Q must be regular: found Det[Q]==0.";
 | 
						|
dualize[ Q_, p_ ] := Block[
 | 
						|
    { m, n, xv, lv, uv, vars, polys, dual },
 | 
						|
    If[Det[Q] == 0,
 | 
						|
      Message[dualize::"singular"],
 | 
						|
      m = Length[p];
 | 
						|
      n = Length[Q] - 1;
 | 
						|
      xv = Table[Subscript[x, i], {i, 0, n}];
 | 
						|
      lv = Table[Subscript[l, i], {i, 1, m}];
 | 
						|
      uv = Table[Subscript[u, i], {i, 0, n}];
 | 
						|
      (* Konstruiere Ideal polys. *)
 | 
						|
      If[m == 0,
 | 
						|
        polys = Q.uv,
 | 
						|
        polys = Join[p, Q.uv - Transpose[Outer[D, p, xv]].lv]
 | 
						|
        ];
 | 
						|
      (* Eliminiere die ersten n + 1 + m Variablen xv und lv
 | 
						|
         aus dem Ideal polys. *)
 | 
						|
      vars = Join[xv, lv];
 | 
						|
      dual = GroebnerBasis[polys, uv, vars];
 | 
						|
      (* Ersetze u mit x im Ergebnis. *)
 | 
						|
      ReplaceAll[dual, Rule[u, x]]
 | 
						|
      ]
 | 
						|
    ]
 | 
						|
</textarea>
 | 
						|
 | 
						|
<script>
 | 
						|
  var mathematicaEditor = CodeMirror.fromTextArea(document.getElementById('mathematicaCode'), {
 | 
						|
    mode: 'text/x-mathematica',
 | 
						|
    lineNumbers: true,
 | 
						|
    matchBrackets: true
 | 
						|
  });
 | 
						|
</script>
 | 
						|
 | 
						|
<p><strong>MIME types defined:</strong> <code>text/x-mathematica</code> (Mathematica).</p>
 | 
						|
</article>
 |