mirror of
				https://github.com/zadam/trilium.git
				synced 2025-10-31 19:49:01 +01:00 
			
		
		
		
	adapt or regenerate embeddings - allows users to decide
This commit is contained in:
		
							parent
							
								
									5ad730c153
								
							
						
					
					
						commit
						84a8473beb
					
				| @ -340,6 +340,15 @@ export default class AiSettingsWidget extends OptionsWidget { | ||||
|                 <div class="form-text">${t("ai_llm.embedding_default_provider_description")}</div> | ||||
|             </div> | ||||
| 
 | ||||
|             <div class="form-group"> | ||||
|                 <label>${t("ai_llm.embedding_dimension_strategy")}</label> | ||||
|                 <select class="embedding-dimension-strategy form-control"> | ||||
|                     <option value="adapt">Adapt dimensions (faster)</option> | ||||
|                     <option value="regenerate">Regenerate embeddings (more accurate)</option> | ||||
|                 </select> | ||||
|                 <div class="form-text">${t("ai_llm.embedding_dimension_strategy_description") || "Choose how to handle different embedding dimensions between providers. 'Adapt' is faster but less accurate, 'Regenerate' is more accurate but requires API calls."}</div> | ||||
|             </div> | ||||
| 
 | ||||
|             <div class="form-group"> | ||||
|                 <label>${t("ai_llm.embedding_provider_precedence")}</label> | ||||
|                 <input type="hidden" class="embedding-provider-precedence" value=""> | ||||
| @ -812,6 +821,11 @@ export default class AiSettingsWidget extends OptionsWidget { | ||||
|             await this.displayValidationWarnings(); | ||||
|         }); | ||||
| 
 | ||||
|         const $embeddingDimensionStrategy = this.$widget.find('.embedding-dimension-strategy'); | ||||
|         $embeddingDimensionStrategy.on('change', async () => { | ||||
|             await this.updateOption('embeddingDimensionStrategy', $embeddingDimensionStrategy.val() as string); | ||||
|         }); | ||||
| 
 | ||||
|         const $embeddingProviderPrecedence = this.$widget.find('.embedding-provider-precedence'); | ||||
|         $embeddingProviderPrecedence.on('change', async () => { | ||||
|             await this.updateOption('embeddingProviderPrecedence', $embeddingProviderPrecedence.val() as string); | ||||
| @ -1151,7 +1165,8 @@ export default class AiSettingsWidget extends OptionsWidget { | ||||
|         this.$widget.find('.embedding-similarity-threshold').val(options.embeddingSimilarityThreshold || '0.65'); | ||||
|         this.$widget.find('.max-notes-per-llm-query').val(options.maxNotesPerLlmQuery || '10'); | ||||
|         this.$widget.find('.embedding-default-provider').val(options.embeddingsDefaultProvider || 'openai'); | ||||
|         this.$widget.find('.embedding-provider-precedence').val(options.embeddingProviderPrecedence || 'openai,ollama,anthropic'); | ||||
|         this.$widget.find('.embedding-provider-precedence').val(options.embeddingProviderPrecedence || 'openai,ollama'); | ||||
|         this.$widget.find('.embedding-dimension-strategy').val(options.embeddingDimensionStrategy || 'adapt'); | ||||
|         this.$widget.find('.embedding-generation-location').val(options.embeddingGenerationLocation || 'client'); | ||||
|         this.$widget.find('.embedding-batch-size').val(options.embeddingBatchSize || '10'); | ||||
|         this.$widget.find('.embedding-update-interval').val(options.embeddingUpdateInterval || '5000'); | ||||
|  | ||||
| @ -106,7 +106,8 @@ const ALLOWED_OPTIONS = new Set([ | ||||
|     "embeddingSimilarityThreshold", | ||||
|     "maxNotesPerLlmQuery", | ||||
|     "enableAutomaticIndexing", | ||||
|     "embeddingGenerationLocation" | ||||
|     "embeddingGenerationLocation", | ||||
|     "embeddingDimensionStrategy" | ||||
| ]); | ||||
| 
 | ||||
| function getOptions() { | ||||
|  | ||||
| @ -165,18 +165,25 @@ export async function findSimilarNotes( | ||||
|             log.info(`Available embeddings: ${JSON.stringify(availableEmbeddings.map(e => ({ | ||||
|                 providerId: e.providerId, | ||||
|                 modelId: e.modelId, | ||||
|                 count: e.count | ||||
|                 count: e.count, | ||||
|                 dimension: e.dimension | ||||
|             })))}`);
 | ||||
| 
 | ||||
|             // Import the AIServiceManager to get provider precedence
 | ||||
|             const { default: aiManager } = await import('../ai_service_manager.js'); | ||||
| 
 | ||||
|             // Import vector utils for dimension adaptation
 | ||||
|             const { adaptEmbeddingDimensions } = await import('./vector_utils.js'); | ||||
| 
 | ||||
|             // Get user dimension strategy preference
 | ||||
|             const options = (await import('../../options.js')).default; | ||||
|             const dimensionStrategy = await options.getOption('embeddingDimensionStrategy') || 'adapt'; | ||||
|             log.info(`Using embedding dimension strategy: ${dimensionStrategy}`); | ||||
| 
 | ||||
|             // Get providers in user-defined precedence order
 | ||||
|             // This uses the internal providerOrder property that's set from user preferences
 | ||||
|             const availableProviderIds = availableEmbeddings.map(e => e.providerId); | ||||
| 
 | ||||
|             // Get dedicated embedding provider precedence from options
 | ||||
|             const options = (await import('../../options.js')).default; | ||||
|             let preferredProviders: string[] = []; | ||||
| 
 | ||||
|             const embeddingPrecedence = await options.getOption('embeddingProviderPrecedence'); | ||||
| @ -215,53 +222,54 @@ export async function findSimilarNotes( | ||||
|                 const providerEmbeddings = availableEmbeddings.filter(e => e.providerId === provider); | ||||
| 
 | ||||
|                 if (providerEmbeddings.length > 0) { | ||||
|                     // Find models that match the current embedding's dimensions
 | ||||
|                     const dimensionMatchingModels = providerEmbeddings.filter(e => e.dimension === embedding.length); | ||||
|                     // Use the model with the most embeddings
 | ||||
|                     const bestModel = providerEmbeddings.sort((a, b) => b.count - a.count)[0]; | ||||
|                     log.info(`Found fallback provider: ${provider}, model: ${bestModel.modelId}, dimension: ${bestModel.dimension}`); | ||||
| 
 | ||||
|                     // If we have models with matching dimensions, use the one with most embeddings
 | ||||
|                     if (dimensionMatchingModels.length > 0) { | ||||
|                         const bestModel = dimensionMatchingModels.sort((a, b) => b.count - a.count)[0]; | ||||
|                         log.info(`Found fallback provider with matching dimensions (${embedding.length}): ${provider}, model: ${bestModel.modelId}`); | ||||
|                     if (dimensionStrategy === 'adapt') { | ||||
|                         // Dimension adaptation strategy (simple truncation/padding)
 | ||||
|                         const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension); | ||||
|                         log.info(`Adapted query embedding from dimension ${embedding.length} to ${adaptedEmbedding.length}`); | ||||
| 
 | ||||
|                         // Recursive call with the new provider/model, but disable further fallbacks
 | ||||
|                         // Use the adapted embedding with the fallback provider
 | ||||
|                         return findSimilarNotes( | ||||
|                             embedding, | ||||
|                             adaptedEmbedding, | ||||
|                             provider, | ||||
|                             bestModel.modelId, | ||||
|                             limit, | ||||
|                             threshold, | ||||
|                             false // Prevent infinite recursion
 | ||||
|                         ); | ||||
|                     } else { | ||||
|                         // We need to regenerate embeddings with the new provider
 | ||||
|                         log.info(`No models with matching dimensions found for ${provider}. Available models: ${JSON.stringify( | ||||
|                             providerEmbeddings.map(e => ({ model: e.modelId, dimension: e.dimension })) | ||||
|                         )}`);
 | ||||
| 
 | ||||
|                     } | ||||
|                     else if (dimensionStrategy === 'regenerate') { | ||||
|                         // Regeneration strategy (regenerate embedding with fallback provider)
 | ||||
|                         try { | ||||
|                             // Import provider manager to get a provider instance
 | ||||
|                             const { default: providerManager } = await import('./providers.js'); | ||||
|                             const providerInstance = providerManager.getEmbeddingProvider(provider); | ||||
| 
 | ||||
|                             if (providerInstance) { | ||||
|                                 // Use the model with the most embeddings
 | ||||
|                                 const bestModel = providerEmbeddings.sort((a, b) => b.count - a.count)[0]; | ||||
|                                 // Configure the model by setting it in the config
 | ||||
|                                 try { | ||||
|                                     // Access the config safely through the getConfig method
 | ||||
|                                 // Try to get the original query text
 | ||||
|                                 // This is a challenge - ideally we would have the original query
 | ||||
|                                 // For now, we'll use a global cache to store recent queries
 | ||||
|                                 interface CustomGlobal { | ||||
|                                     recentEmbeddingQueries?: Record<string, string>; | ||||
|                                 } | ||||
|                                 const globalWithCache = global as unknown as CustomGlobal; | ||||
|                                 const recentQueries = globalWithCache.recentEmbeddingQueries || {}; | ||||
|                                 const embeddingKey = embedding.toString().substring(0, 100); | ||||
|                                 const originalQuery = recentQueries[embeddingKey]; | ||||
| 
 | ||||
|                                 if (originalQuery) { | ||||
|                                     log.info(`Found original query "${originalQuery}" for regeneration with ${provider}`); | ||||
| 
 | ||||
|                                     // Configure the model
 | ||||
|                                     const config = providerInstance.getConfig(); | ||||
|                                     config.model = bestModel.modelId; | ||||
| 
 | ||||
|                                     log.info(`Trying to convert query to ${provider}/${bestModel.modelId} embedding format (dimension: ${bestModel.dimension})`); | ||||
| 
 | ||||
|                                     // Get the original query from the embedding cache if possible, or use a placeholder
 | ||||
|                                     // This is a hack - ideally we'd pass the query text through the whole chain
 | ||||
|                                     const originalQuery = "query"; // This is a placeholder, we'd need the original query text
 | ||||
| 
 | ||||
|                                     // Generate a new embedding with the fallback provider
 | ||||
|                                     const newEmbedding = await providerInstance.generateEmbeddings(originalQuery); | ||||
| 
 | ||||
|                                     log.info(`Successfully generated new embedding with provider ${provider}/${bestModel.modelId} (dimension: ${newEmbedding.length})`); | ||||
|                                     log.info(`Successfully regenerated embedding with provider ${provider}/${bestModel.modelId} (dimension: ${newEmbedding.length})`); | ||||
| 
 | ||||
|                                     // Now try finding similar notes with the new embedding
 | ||||
|                                     return findSimilarNotes( | ||||
| @ -272,18 +280,38 @@ export async function findSimilarNotes( | ||||
|                                         threshold, | ||||
|                                         false // Prevent infinite recursion
 | ||||
|                                     ); | ||||
|                                 } catch (configErr: any) { | ||||
|                                     log.error(`Error configuring provider ${provider}: ${configErr.message}`); | ||||
|                                 } else { | ||||
|                                     log.info(`Original query not found for regeneration, falling back to adaptation`); | ||||
|                                     // Fall back to adaptation if we can't find the original query
 | ||||
|                                     const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension); | ||||
|                                     return findSimilarNotes( | ||||
|                                         adaptedEmbedding, | ||||
|                                         provider, | ||||
|                                         bestModel.modelId, | ||||
|                                         limit, | ||||
|                                         threshold, | ||||
|                                         false | ||||
|                                     ); | ||||
|                                 } | ||||
|                             } | ||||
|                         } catch (err: any) { | ||||
|                             log.error(`Error converting embedding format: ${err.message}`); | ||||
|                             log.error(`Error regenerating embedding: ${err.message}`); | ||||
|                             // Fall back to adaptation on error
 | ||||
|                             const adaptedEmbedding = adaptEmbeddingDimensions(embedding, bestModel.dimension); | ||||
|                             return findSimilarNotes( | ||||
|                                 adaptedEmbedding, | ||||
|                                 provider, | ||||
|                                 bestModel.modelId, | ||||
|                                 limit, | ||||
|                                 threshold, | ||||
|                                 false | ||||
|                             ); | ||||
|                         } | ||||
|                     } | ||||
|                 } | ||||
|             } | ||||
| 
 | ||||
|             log.error(`No suitable fallback providers found with compatible dimensions. Current embedding dimension: ${embedding.length}`); | ||||
|             log.error(`No suitable fallback providers found. Current embedding dimension: ${embedding.length}`); | ||||
|             log.info(`Available embeddings: ${JSON.stringify(availableEmbeddings.map(e => ({ | ||||
|                 providerId: e.providerId, | ||||
|                 modelId: e.modelId, | ||||
| @ -307,13 +335,8 @@ export async function findSimilarNotes( | ||||
|         const rowData = row as any; | ||||
|         const rowEmbedding = bufferToEmbedding(rowData.embedding, rowData.dimension); | ||||
| 
 | ||||
|         // Check if dimensions match before calculating similarity
 | ||||
|         if (rowEmbedding.length !== embedding.length) { | ||||
|             log.info(`Skipping embedding ${rowData.embedId} - dimension mismatch: ${rowEmbedding.length} vs ${embedding.length}`); | ||||
|             continue; | ||||
|         } | ||||
| 
 | ||||
|         try { | ||||
|             // cosineSimilarity will automatically adapt dimensions if needed
 | ||||
|             const similarity = cosineSimilarity(embedding, rowEmbedding); | ||||
|             similarities.push({ | ||||
|                 noteId: rowData.noteId, | ||||
|  | ||||
| @ -1,9 +1,11 @@ | ||||
| /** | ||||
|  * Computes the cosine similarity between two vectors | ||||
|  * If dimensions don't match, automatically adapts the first vector to match the second | ||||
|  */ | ||||
| export function cosineSimilarity(a: Float32Array, b: Float32Array): number { | ||||
|     // If dimensions don't match, adapt 'a' to match 'b'
 | ||||
|     if (a.length !== b.length) { | ||||
|         throw new Error(`Vector dimensions don't match: ${a.length} vs ${b.length}`); | ||||
|         a = adaptEmbeddingDimensions(a, b.length); | ||||
|     } | ||||
| 
 | ||||
|     let dotProduct = 0; | ||||
| @ -26,6 +28,52 @@ export function cosineSimilarity(a: Float32Array, b: Float32Array): number { | ||||
|     return dotProduct / (aMagnitude * bMagnitude); | ||||
| } | ||||
| 
 | ||||
| /** | ||||
|  * Adapts an embedding to match target dimensions | ||||
|  * Uses a simple truncation (if source is larger) or zero-padding (if source is smaller) | ||||
|  * | ||||
|  * @param sourceEmbedding The original embedding | ||||
|  * @param targetDimension The desired dimension | ||||
|  * @returns A new embedding with the target dimensions | ||||
|  */ | ||||
| export function adaptEmbeddingDimensions(sourceEmbedding: Float32Array, targetDimension: number): Float32Array { | ||||
|     const sourceDimension = sourceEmbedding.length; | ||||
| 
 | ||||
|     // If dimensions already match, return the original
 | ||||
|     if (sourceDimension === targetDimension) { | ||||
|         return sourceEmbedding; | ||||
|     } | ||||
| 
 | ||||
|     // Create a new embedding with target dimensions
 | ||||
|     const adaptedEmbedding = new Float32Array(targetDimension); | ||||
| 
 | ||||
|     if (sourceDimension < targetDimension) { | ||||
|         // If source is smaller, copy all values and pad with zeros
 | ||||
|         adaptedEmbedding.set(sourceEmbedding); | ||||
|         // Rest of the array is already initialized to zeros
 | ||||
|     } else { | ||||
|         // If source is larger, truncate to target dimension
 | ||||
|         for (let i = 0; i < targetDimension; i++) { | ||||
|             adaptedEmbedding[i] = sourceEmbedding[i]; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     // Normalize the adapted embedding to maintain unit length
 | ||||
|     let magnitude = 0; | ||||
|     for (let i = 0; i < targetDimension; i++) { | ||||
|         magnitude += adaptedEmbedding[i] * adaptedEmbedding[i]; | ||||
|     } | ||||
| 
 | ||||
|     magnitude = Math.sqrt(magnitude); | ||||
|     if (magnitude > 0) { | ||||
|         for (let i = 0; i < targetDimension; i++) { | ||||
|             adaptedEmbedding[i] /= magnitude; | ||||
|         } | ||||
|     } | ||||
| 
 | ||||
|     return adaptedEmbedding; | ||||
| } | ||||
| 
 | ||||
| /** | ||||
|  * Converts embedding Float32Array to Buffer for storage in SQLite | ||||
|  */ | ||||
|  | ||||
| @ -543,6 +543,27 @@ class IndexService { | ||||
|             const embedding = await provider.generateEmbeddings(query); | ||||
|             log.info(`Generated embedding for query: "${query}" (${embedding.length} dimensions)`); | ||||
| 
 | ||||
|             // Store query text in a global cache for possible regeneration with different providers
 | ||||
|             // Use a type declaration to avoid TypeScript errors
 | ||||
|             interface CustomGlobal { | ||||
|                 recentEmbeddingQueries?: Record<string, string>; | ||||
|             } | ||||
|             const globalWithCache = global as unknown as CustomGlobal; | ||||
| 
 | ||||
|             if (!globalWithCache.recentEmbeddingQueries) { | ||||
|                 globalWithCache.recentEmbeddingQueries = {}; | ||||
|             } | ||||
| 
 | ||||
|             // Use a substring of the embedding as a key (full embedding is too large)
 | ||||
|             const embeddingKey = embedding.toString().substring(0, 100); | ||||
|             globalWithCache.recentEmbeddingQueries[embeddingKey] = query; | ||||
| 
 | ||||
|             // Limit cache size to prevent memory leaks (keep max 50 recent queries)
 | ||||
|             const keys = Object.keys(globalWithCache.recentEmbeddingQueries); | ||||
|             if (keys.length > 50) { | ||||
|                 delete globalWithCache.recentEmbeddingQueries[keys[0]]; | ||||
|             } | ||||
| 
 | ||||
|             // Get Note IDs to search, optionally filtered by branch
 | ||||
|             let similarNotes = []; | ||||
| 
 | ||||
|  | ||||
| @ -189,7 +189,8 @@ const defaultOptions: DefaultOption[] = [ | ||||
|     { name: "aiSystemPrompt", value: "", isSynced: true }, | ||||
|     { name: "aiProviderPrecedence", value: "openai,anthropic,ollama", isSynced: true }, | ||||
|     { name: "embeddingsDefaultProvider", value: "openai", isSynced: true }, | ||||
|     { name: "embeddingProviderPrecedence", value: "openai,ollama,anthropic", isSynced: true }, | ||||
|     { name: "embeddingProviderPrecedence", value: "openai,ollama", isSynced: true }, | ||||
|     { name: "embeddingDimensionStrategy", value: "adapt", isSynced: true }, | ||||
|     { name: "enableAutomaticIndexing", value: "true", isSynced: true }, | ||||
|     { name: "embeddingSimilarityThreshold", value: "0.65", isSynced: true }, | ||||
|     { name: "maxNotesPerLlmQuery", value: "10", isSynced: true }, | ||||
|  | ||||
| @ -77,6 +77,7 @@ export interface OptionDefinitions extends KeyboardShortcutsOptions<KeyboardActi | ||||
|     embeddingSimilarityThreshold: string; | ||||
|     maxNotesPerLlmQuery: string; | ||||
|     embeddingGenerationLocation: string; | ||||
|     embeddingDimensionStrategy: string; // 'adapt' or 'regenerate'
 | ||||
| 
 | ||||
|     lastSyncedPull: number; | ||||
|     lastSyncedPush: number; | ||||
|  | ||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user
	 perf3ct
						perf3ct